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TECHNICAL NOTE 2562

NUMERICAL DETERMINATION OF INDICIAL
LIFT OF A THO-DIMENSIONAL SINKING ATRFOTL AT SUBSONIC
MACH NUMBERS FROM OSCILIATORY LIFT COEFFICIENTS WITH
CALCULATTONS FOR MACH NUMBER 0.7

By Bernard Mazelsky
SUMMARY

The reciprocal equations for relating the incompressible circula-
tory indicial 1lift to the 1lift due to harmonic oscillations have been
modified to include the noncirculatory 1ift assoclated with apparent-
mags effects. Although the apparent-mass effects are impulsive in
nature in incompressible flow, the 1ift due to apparent-mass effects in
compressible flow is & time-dependent function. The corresponding
reciprocal equations for the total compressible 1ift are given. By use
of the reciprocal equations for compressible flow, the Indicial 1ift and
moment functions due to an airfoill!s experiencing a sudden acquisition
of vertical velocity are determined numerically for Mach number O.7T.
Lack of sufficient flutter coefficients prevents the calculation of
these functions at other Mach numbers.

Although the indicial 1ift and moment functions due to penetration
of a sharp-edge gust may be obtained from the oscillatory tab or aileron
coefficlents by a similar analysis, sufficient coefficients are not
aveilable at the present. However, an approximate method is shown for
determining a portion of this unsteady-lift function.

When a comparison is made of the indicial 1ift functions at Mach
numbers 0.0 and 0.7, it is noted that the growth of 1ift to the steady
state appears to be less rapid for the compressible case than for the
incompressible case. Consequently, the calculation of the gust load
factor at high subsonic Mach numbers utilizing the two-dimensional
incompressible indicial 1ift functions and an over-all correction for
compressibility such as the Prandtl-Glauert factor might be conservative:.

INTRODUCTION

A ¥nowledge of transient flows is importent in many aeronautical
problems. In the study of transient flows, two types of airfoil motions
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have had special significance - & harmonically oscillating alirfoil and
an alrfoil experiencing a gudden change in angle of attack. The 11ift
function for an airfoil experiencing a sudden change in angle of attack
and the 1lift function associated with the growth of 1lift on an airfoil
due to penetration of a sharp-edge gust are commonly referred to as
indicial 1lift functions. The present paper is concerned with the use
of reciprocal relations for determining for compressible flow the
indicial 1ift functions directly from the lift data that are available
for the airfoll oscillating harmonically.

The indicial 1ift functions have been derived for two-dimensional
incompressible flow; the function for a sudden change in angle of
attack was derived by Wagner, see reference 1, while the penetration
function was derived by Kilssner, reference 2. An account of the rela-
tions that exist between these indicial 1ift functions and the 1lift
coefficients for a two-dimensional oscillating alrfoil is glven by
Garrick in reference 3.

In a recent paper by Lomsx, Heaslet, and Sluder (reference 4), a
method for determining the indicial 1ift and moment function is given.
While the beginning portion of the indicial functions can be calculated
readily and the final value is considered to be the steady-state 1lift
value given by the Prandtl-Glauert factor, the intermediate or transi-
tion velues of the indicial 1ift functions are difficult to obtain by
this method and consequently numerical results are given only for a Mach
number of 0.8 in reference L.

The gituation in regard to the subsonic compressible-flow coef-
ficients for an oscillating airfoil is much better. Possio (refer-
ence 5) has formulated the problem in & linearized form for determining
the 1ift and moment for the oscillatory case. Dietze, Schade, and
Frazer and Skan (references 6, 7, and 8) present the lift coefficlents
of a harmonically oscillating airfoil at various Mach numbers up to 0.8
and for various values of reduced frequency up to eabout 2.5. It was
felt desirable to see whether these available flutter data could be used
in conjunction with the reciprocal relations to obtain the complete
indicial 1ift functions for compressible flow since, for dynamic-load
studies, knowledge of the indicial 1lift functions is needed over a
larger range of chord lengths than that given in reference 4 for Mach
numbers other than 0.8. This paper discusses the use of the reciprocal
relations for the case of compressible flow and presents an evaluation of
the indicial functions for M = 0.7 for an airfoil suddenly acquiring a
vertical velocity, for which case it was found that sufficient oscillatory
1ift data were available. '

~ The indicial 1lift function due to penetration of a sharp-edge gust
could also be determined by superposition provided the oscillatory 1lift
coefficients were known for a wide range of flap to chord ratios as well
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ag for a range of reduced frequencies. Unfortunately, sufficient data
are not available at the present time; however, in order to provide
some insight as to the growth of 1ift for the gust case, an alternate
method is shown for approximating most of this function. :

By 81, O

SYMBOLS

distance traveled, half-chords
angular frequency
forward velocity of alrfoil

chord

reduced-frequency parameter (%%)

1ift per unit length of span

moment per unit length of span about quarter-chord point
density

amplitude of vertical displacement, half-chords

first and second derivatives of h with respect to s
Mach number

impulse function, &(s) = for s

. [0
and ‘jp 5(8) ds = 1
-00

I

0, 8(s8) =0 for s #0,

indicial 1ift function for an airfoll experiencing a sudden
acquisition in vertical velocity as used in equation

L = -ﬂpcv2ﬁkl(s)

velocity of sharp-edge gust

indicial 11t function due to penetration of a sharp-edge
gust as used in equation L = -mpcVUko(s)
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m, (s) indicial moment functlion for an airfoil experiencing a
sudden acquisition of vertical velocity where moment is
taken about quarter-chord position

xcp(s) center-of-pressure location in percent chord from leading
edge for an airfoll experiencing & sudden acquisition of

vertical velocity

C(k) Theodorsen's circulatory 1lift function (reference 9),
F(k) + i6(k), as used in equation L = -n’pcvgheiksE-ikC(kﬂ
Cc(k) complex compressible~-flow oscillatory 1ift coefficient which

includes both circulatory- and noncirculatory-lift com-~
ponents, Cq(k) = Fo(k) + 1G.(k), as used in equation

L = -npcveeikshlz-i_kcc(kﬂ

M(k) in-phase component of the complex moment corresponding to
the F.(k) 1ift coefficient

£(k) = Fo(k) - Fe(w)

m(k) = M(k) - M()

Zl, Zy in-phase and out-of-phase 1ift coefficients agsociated with
transglation of the airfoil ss used in equation

L = 1tpc\72e:Lks %(Zl + 1Z2)

My, Mo in-phase and out-of-phase moment coefficient about quarter-
chord position associated with translation of the airfoil

= 2y2.iks h
as used in equation M = wpcVoe §(Ml + :LME)

A, B, C constants

Matrix notation:

L ‘l rectangular matrix

{ } column matrix
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ANALYSIS AND RESULTS
Superposition Integrals for the Incompressible

and Compressible Cases

The reciprocal equations which are essentially a special form of
the superposition integral have been derlved for the incompressible
circulatory 1ift by Garrick (reference 3). This section first discusses
an extension of Garrick's work by incorporating the potential 1ift due
to apparent-mass effects into the reciprocal equations for the incom-
pressible case. - The reciprocal equations for the compressible case are
then indicated and thg evaluation of the indicial 1ift and moment for
an airfoll experiencing a sudden acquisition of vertical velocity 1s
determined for the case of M = 0.7.

Incompressible case.- In.the incompressible case, the 1ift in
unsteady motion has been separated into two parts - a noncirculatory
1ift which is commonly referred to as an apparent-mass effect and a
1ift due to the circulation about the airfoil. The recliprocal equa-
tions for incompressible flow are expressed only in terms of Theodorsen's
circulatory-1ift function C(k) and Wagner's indicial-1ift function k;(s)

and can be expressed in two separate forms as follows:

* (k) sin k .
i) =2 [ HE o g (s>0) (1)
and
kl(s)=l+§-\/;mﬂi1??—lilidk (s > 0) (1b)

where F(k) and G(k) are, respectively, the in-phase and out-of-phese
components of circulatory 1ift on a harmonlically oscillating alrfoll defined
by the equation .

L = —ﬁpcvzheiks E-ikc(kﬂ

where

C(k) = F(x) + 1G(k)
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The kl(s) function is defined such that the 1ift on an airfoil experi-

encing a sudden acquisition of vertical velocity may be expressed by the
following equation:

L = -npcvaﬁkl(s) (2)

Two relations that can be obtained from equation (la) are (1) that
the value of F(k) at k = 0 is equal to the asymptotic value
of kl(s) as 8 tends to infinity, these values corresponding to the

steady-state 1ift, and (2) that the initial value of k;(s) is equal

in magnitude to the asymptotic value of F(k) as k tends to infinity.
This second relation is not readily evident from equation (la); con-
sequently, a mathematical proof of this second relation is shown in
appendix A, As a result of these relationships, the initial value and
the asymptote of the kj(s) function can be determined from the given

F(k) function. A knowledge of these end points is valuable in a
numerical solution of the reciprocal equations.

As noted previously, equations (1la2) and (1b) express only the
circulatory part of the 1ift and, therefore, do not account for the
apparent-mags effects. An expression for the apparent-mass effects for
the indicial case, however, may be obtained as follows,

The 1ift due to apparent-mags effects alone for any arbltrary
vertical motion of the airfoll when written in terms of the nondi-
mengional displacement h 1is given in reference 9 as

- c2 c 2y
L = -np ¥ 2 ;—2— h(s) (3)

When this equation is applied to the case of an airfoil experiencing a

sudden vertical velocity, ﬁ(s) becomes impulsive in character. The
magnitude of this impulse may be defined by

H(s) = h5(s)

vhere ﬁ is the instantaneous vertical velocity acquired by the airfoil
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and the function &(s) is.defined such that &(s8) = o for s

8(s) =0 for s #0, and
fw 3(s)ds = 1

-0

[}
o
.

When ﬁ&(s) is substituted for the impulsive sinking acceleration g(s)
in equation (3), the resulting expression for the 1ift due to apparent
mass alone becomes

Limpuige = -nocvZh %8k (4)

If the impulsive part of the unsteady-1ift functions is designated by
ky(8)impuige &nd if the form of equation (2) is retained, then the

expression for the impulsgive 1ift may be written

Limpulse = ‘“pcveikl(s)impulse (5)

The value of kl(s) due to appérent—mass effects in the incompressible

case mey then be determined by a comparisan of equations (4) and (5) to
glive

k1(B)impulse - % 8(s) (6)

Addition of the kj(s) function due to circulation, equations (1), and
the kl(s)impulse function, equation (6), then gives the expressions
for the 1ift for the indiciasl case as follows:

k1 (8) total = -‘,%/; P(k) ein k5 g 4 L 5(a) (s20) (7a)
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and \

K () gotay = 1 + %fo 6(k) cos ks qx 4 L 5(s) (s20) ()

Compressible case.- While in the Incompressible case it has been
found convenient and natural to consider the circulatory and non-
circulatory lifts separately (this separation is especially desirable
because of the impulsive nature of the noncirculatory part), these
circumgtances do not exist in the compressible case. The perturbation
veloclities are finite in the compressible case (since speed of sound is
considered finite) and, consequently, the effects of the pressure dis-
turbsnces in the whole flow field are not felt instantaneously as for
incompressible flow. Consequently, the 1ift due to apparent-mags
effects would not be lmpulsive but would remsin finite and time dependent.
Separation of the lifts is not necessary in the compressible case and,
moreover, is not convenient since the available results for the com-
pressible case are presented numerically only for the total 1ift. The
reciprocal equations for the total compressible 1ift are, therefore,
much simpler than the equations for the incompressible case since the
impulge function may be disregarded.

For compressible flow, the case is exactly analogous to the treat-
ment of indicial admittance given by Bush in reference 10. In this
reference, equations are glven which relate the indicial admittance to
the in-phase and out-of-phase responses of a system subjected to an
oscillatory forcing function. In notation similar to that.used for
incompressible flow, these expressions may be written as follows

® F.(k) sin ke

k1 (8)potal = %j; - = >0 (@)
and
ky (8)gotar = FelO) + %L Gc(k)kcos 2 (s >0) (8v)

vhere F.(k) and G.(k) are, respectively, the in-phase and out-of-

phase 1ift components on an oscillating airfoll and are defined by the
equation
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L= -ﬂpcvzheikBEikCc(kﬂ ~ (9)
where

Co(k) = Fo(k) + 1G, (k)

Equations (8a) and (8b) are applicable for the compressible case pro-
viding the function Cc(k) is continuous and finite in the interval O

to o, From the physical conditions for the compressible case, it can
reasonably be assumed that these functions adhere to those conditions.

It is of interest to note that, when these equations are applied to
Incompressible flow, they apply only to the circulatory part of the 1lift
as glven by equations (la) and (1b). In this case, the factor F.(0)

becomes, by definition, simply unity. For compressible flow, the fac-~
tor F.(0) acquires a value given by the Prandtl-Glauert factor —L
2
1-M

The existing coefficlents for the translatory case which‘are to be
used in the reciprocal relations have been given in various forms hegin-
ning with Possio's work. The form in which all the results are commonly -
put is

2 1ks p

L = wpcVe 3(Z + 1Zp) (10a)
and
M = npcyLett® 204y + 1Mp) (10b)

where M 1ig the moment acting about the quarter-chord point. In order
to make convenient use of the reciprocel relations given by equations (8a)
and (8b), it is first necessary to convert the expression for lift given
by equation (10a) to a form similar to the one used in equation (9). When
the expressions (9) and (10a) are compared, the following correspondence
18 seen to exist for compressible f}ow:

Zo(k)

Fo(k) = 50

(11a)
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and

G.(k) = :E%éEl (11b)

Summary of Aveilable Flutter Coefficients and Related Data
for Subsonic Compressible Floﬁ

The two-dimensional compressible flutter coefficients for the real
and imsginary parts of the 1ift and moment oscillatory coefficients for
sinking motion are given in table I for three Mach numbers, M = 0.5,

M =0.6, and M = 0.7. This table represents a summary of the results
of three authors where the flutter coefflcients by each have been con-
verted to the Z;, Zp, Mp, and M, form for use in equations (10a)

and (10b). The values of Z, and Z, correspond to the 1ift coef-
ficients indicated in equation (10a2), and the values of M) and My

indicated in equation (10b) correspond to the moment teken about the
quarter-chord position. The values of these coefficients were obtained
from three sources, and the range of reduced frequencles teken from each
source is Indicated in table I. Data for large values of reduced fre-
quency do not appear to exist. The accuracy of these data for reduced
frequencies lower than approximately 1 is better than the accuracy of
the data at higher values of reduced frequency (see reference 8), but a
reasonably good solution for the indicial 1ift and moment functions is
8till possible since this decrease in accuracy at the higher reduced
frequencies will be shown t0 have little effect on the determination of
elither the unsteady 1lift or unsteady mement functions provided the value
of the flutter coefficients at the infinite reduced frequency is known.
Fortunately these values can be determined from the initial value of the
indicial functions (see appendix A). If the flutter coefficients are
known up to a reduced frequency where they have practically the same
value as the flutter coefficlent at the infinite reduced frequency, then
they are known for a sufficilent range of reduced frequencies for deter-
mining a reliable solution of the Indicial functions. This condition
exists for M = 0.7 since values of the flutter coefficlents at a
reduced frequency of 2.5 have been found to agree quite well with the
values at the infinite reduced frequency. However, values of the flutter
coefficients at M = 0.5 and M = 0.6 are known only for reduced fre-
quencies up to 1. Also, the flutter coefficients at these Mach numbersg
mist be known for higher values of reduced frequency than for M = 0.7
since the flutter coefficients approach the values at the Infinite fre-
quency at a mich slower rate. Consequently, the only Mach number for
vhich sufficient data were found available for obtaining the indicial
functions is M = O.7T. .
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In order to aid in the numerical solution of the reciprocal equa-
tions, the end points of the F.(k) function should be determined.

These end points may be determined independently of the flutter coef-
ficlents. The value of F,(0) which represents the steady-state 1ift
can be given by the Prandtl-Glauert factor —L . When an attempt is
2
1-M
made to calculate this end point from the Z; and 2Zp coefficients
given in table I, an indeterminate form is found; however, the magnitude
of this indeterminate quantity when properly evaluated agrees very well
with the factor —3 . The value of Fo(») which corresponds to the
Vi - M2
value of kj(s) &t s =0 (see appendix A) can be determined by the
following equation

Fc(co) = (12)

2
M

Numerical Solution of the Reciprocal Equation

The indicial 1ift function k;(s) can be determined from either of
equations (8a) and (8b) where the coefficients F.(k) and G (k) are

determined from-the oscillatory coefficients by equations (1lla) and
(11b).. It has been noted that, of the data presented in table I, the
only Mach number for which sufficlent data are available for providing
8 reasonable estimate of the indicial 1ift and moment on the airfoil -
is M = 0.7 since values of the flutter coefficients are not given for
values of k > 1 at the other Mach numbers. A plot of the F,(k) and

G.(k) functions for this Mach number is shown in figure 1. Although a
smooth curve can be drawn for the Fé(k) function at the higher reduced
frequencies, the data for the G,(k) function appear to be erratic in

this region. Consequently, the latter function is represented by a
broken line at the higher reduced frequencies. Also, the numerical
evaluation of the k;(s) function by equation (8b) is more difficult

than by equation (8a) because the integrand in equation (8b) is inde- -
terminate at k = 0. In order to evaluate this indeterminate form, the
value of the derivative of G.(k) &t k = O must be known. Since the

function G.(k) is not given in a closed form, this derivative would

be difficult to determine accurately in the compressible case. Because
of the erratic nature of the Gc(k) function at the higher values of

reduced frequency and because of the presence of this indeterminate form
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o
of G.(k) at k = 0, eguation (8a) is used throughout the ensuing
analysis for determining the indicial functions.

The graphical solution of equation (8a) may be simplified consider-
ably by incorporating in the solution of this equetion the known value
of the flutter coefficient at the infinite reduced frequency by making
the following substitution for the flutter coefficient Fc(k):

£(k) = Fo(k) - Fo(e) (132)
or

Fo(k) = £(k) + F(») (13b)

The substitution of equation (13b) into equation (lla) leads to an
alternate equation for k;(s):

® (k) sin ks

ky(8) = Fo(w) + %j; - dk (1k)

The graphical solution of kl(s) is thué simplified since the integral

in this exXpression can be evaluated more readily than the integral in
equation (8a) because the integrand approaches zero mich more rapidly.

The F.(k) function for M = 0.7 1is calculated from the flutter
coefficlent Zo, by equation (1la) and is shown in figure 1 together

with the value of the asymptote calculated by equation (12). The trans-
formed function £(k) as obtained by equation (13a) is shown in fig-
ure 2. A plot of the integrand in equation (14) for several values of g
is shown in figure -3. These integrands were integrated by means of a
planimeter. The kl(s) function thus found by means of equation (14) is

shown in figure 4 along with the kj(s)- function for M = 0.0. In this

same figure a part of an independent solution for M = 0.7 given in
reference 4 is also shown.

It will be useful to fit the ky(s) function for M = 0.7 given

in figure 4 by some analytical function. Since the exponential function
has a simple operational equivalent and has been found convenient in
approximating the k;(s) function at M = 0.0 (see reference 11), a



NACA TN 2562 \ | 13

limited series of such functions was chosen to approximate the
ky(s) function at M = 0.7. The function found to fit this curve quite

well is

() = L.4(1 - 0.360e™0-09368 _ 01405670398 | 0 11ge=0-9028) (15

and is also shown in figure 4. The corresponding approximate expressions
for the harmonically oscillating airfoil can be found from equaticn (15)
in a similar manner shown in reference 1l. The expressions for F,(k)
and G.(k) are

2 2 2
Fo(k) = 1.4{1 - o.36hg 5 - o.uogk S+ 0. 419Kk (162)
(0.0536) +k  (0.357) +k  (0.902) +k
and
G (k) = L.k}~ 0.01951k _ 0. 1446k + 0.3779%k (16b)

(0.0536)2 + k2 (0.357)2 + k2 (o.902)2 + k

Both of these expressions are plotted in figure 1 for comparison with
the data obtained from the flutter coefflcients. Note that the approxi-
mate expression for the F.(k) function is in fairly good agreement for

all of the k wvalues considere@. However, relatively poor agreement
exlsts for the G_.(k) function at the higher values of k. This com-

parison 1s to be expected since, as was previously cited, the Gc(k) func-

tion obtained from the flutter coefficlents appears to he quite erratic
at the higher values of k.

The solution of the reciprocal equation has thus far been shown for
the calculation of the k;(s) function. Since the reciprocal equations

are also applicable to the determination of the unsteady moment m (s)
due to a sudden change in airfoil vertical velocity, the ml(s) function

taken about the quarter-chord point can be shown to be given by
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n (s) = %f: E(k);ﬂ dk (17)

where M(k) is considered herein to be determined from the flutter coef-
ficient M, by the following equation:

M(k) = - (18)

SN

A plot of the function M(k) for M = 0.7 is shown in figure 5 together
with the value of M(x) determined by

M(o) = = (19)

L
oM

In & manner similar to that shown for the unstea&y—lift case, the func-
tion M(k) 1s then transformed in order that equation (17) can be
evaluated graphically by the following substitution:

m(k) = M(k) - M(») (20e)

or

M(k) = m(k) + M(x) (20b)

A plot of the function m(k) for M = 0.7 is shown in figure 6. The
gubstitution of equation (20b) into equation (17) leads to the expression

m(s) =u() + 2 [ BEL 210 o (21)

Plote of the integrand in equation (21) are shown in figure 7 for several
values of B, and the ml(s) function evaluated by this equation is shown

in figure 8.

If the indicial 1lift function kl(s)' and the indicial moment func-

tion my(s) are known, the variation of indicial center-of-pressure
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Iocation in percent chord can be calculated by means of the following
equation:

ml(s)loo

(22)
kl(s)

ch(é) =25 ~

A plot of the center-of-pressure location is glven in figure 9 and, for
comparison, the case for M = 0. 0. is also shown.

Approximate Considerations for the Indiclal Lift Due to
Penetration of a Sharp-Edge Gust

Because of the limited number of flutter coefficients available for
flap motions, as noted in the introduction, the determination of the
indicial 1ift function for penetration ko(s) by use of the reciprocal

equations is not possible at the present time. An alternate and perhaps
semirational method for detefmining a part of the penetration func-
tion ko(s) from the kj{s) function on the basis of the relations

between these two functions for the incompressible case is suggested as

follows. The relations between the k;(s) and ky(s) functions for the

incompressible case are given in reference 3 and are as follows:

”

5
ko(s) = %L/; kl(s - Bl)/ETELEI dsqy + %«e(E - 8) (0<s<2) (23)

1 2 81 |
ko(s) = i/; kl(s - sl) 5o e dsy. (s >2) (23b)

>

The first term in equation (23a) is associated with only the circulatory
part of the kl(s)ivfunction while the second term of the equation arises

from the impulsive term in the ky(s) function, and hence is associated

with the apparent-mags effects. This second term is known not to apply
for compressible flow, since for the kl(s) function the apparent-maes

effect is no longer impulsive In character but rather is time dependent.
Therefore this equation cannot be applied to the compressible case. With
regard to the applicability of equation (23b), it is assumed that this



16 \ NACA TN 2562

equation can evaluate the circulatory part of the 1lift for the ko(s) func-
tion provided that only the circulatory part of the ky(s) function is
used. Although the ky(s) function calculated herein for compressible

flow contains both the circulatory and noncirculatory lifts, the following
argument may be used ag & baslis for the assumption that for values of s
greater than approximately 4, the ky(s) function can be considered, for

practical purposes, to be due to circulation only. If the agsumption 1s

made that the 1ift due to apparent-mass effects and the 1ift due to circu-
lation act always at %u-chord position and %u-chord position, respectively,

the moment function m(s) shown in figure 8 must arise from the apparent-

mags effects only. This figure shows that for practical purposes the

moment function, referred to the quarter-chord position, has decayed to a
negligible value for s greater than approximately 4. Thus the portion
of the ky(s) function in figure 4 for s greater than approximately 4

may be assoclated with the 1ift due to circulation only. Imspection of
equation (23b) shows that, if the evaluation of the ko(s) function is
confined to values of s greater than 6, only the portion of the

kl(s) funcgtion for s greater than approximately 4 (the portion attributed

to circulation) will be used. A numerical solution of equations (23a)
and (23b) is given in appendix B. The ko(s) function for M = 0.0 was

calculated by using the k;(s) function for M = 0.0 shown in figure L4

as a means for estimating the accuracy of a numerical solution given by
equation (B9) in appendix B. The values obtained were within 1.5 percent
of the known Kissner function. For the compressible case the ko(s) func-

tion for s greater than approximately 6 was evaluated by utilizing the
ky(s) function for M = 0.7. The results of this calculation are shown in

figure 10. Although the solution for the compressible case 1s approximate,
it is interesting to note that for s > 6, where the solution was reasoned
to be applicable, the growth of 1ift is less rapid for the compressible case
than for the incompressible case. This phenomenon would be expected since
the growth of 1ift due to the kl(s) function, which was used to determine

the k2(s) function, shows this same effect as evidenced by figure L,

POSSTBLE EFFECTS ON GUST LOAD FACTOR

The fact that the growth of 1lift for the k;(s) and ks(s) functions

ig less for the M = 0.7 case than for the M = 0.0 cage may have some
significance in the determination of the response of an airplane to gusts.

The current design procedure for the loads due to gusts on an airplane
utilizes the two-dimensional incompressible-flow k;(s) and ko(s) functions
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and an over-all approximate correction for compressibility. If in the
calculation of the gust load factor at about M = 0.7 +the corresponding
ki(s) and ky(s) functions for M = 0.7 were used instead of the

incompressible kj(s) and ko(s) functions with the over-all approxi-

mate correction for compressibility, then the resulting load factor
would probably be less than that found by using the incompressible
kl(s) functions. This further suggests the desirablility of obtalining

the k2(s) function for the complete range of s and of obtaining the
k2(s) functions for other values of Mach number so that a greater

insight may be had as to the effect of compressibility on the gust load
factor.

CONCLUDING REMARKS

The reciprocal equations which relate the incompressible circulatory
1ift to the 1ift due to harmonic oscillations have been modified to
include the noncirculatory lift due to apparent-mass effects. While the
1lift due to apparent-mass effects for the indicial case is known to be
impulsive for the incompressible case, the 1ift due to apparent-mass
effects for the corresponding compressible case was found to be finite
and & time-dependent function.

The reciprocal equations are evaluated numerically for determining
the indaiclal 1ift and moment on an airfoll experiencing a sudden acqui-
sition of vertical velocity at M = 0.7. Lack of sufficient flutter
coefficients prevents the calculation of these functions at other Mach
numbers.

The growth of 1ift to the steady-state value on an airfoil experi-
encing a sudden acquisition of vertical velocity was found to be less
rapid for the compressible case than for the incompressible case.

An approximate calculation is made for a portion of the imndicial-
1ift function due to penetration of a sharp-edge gust at M = 0.7. It
is noted that the growth of 1ift to the steady-state value for this -
indicial 1lift function was also less rapid than for the incompressible
case. As a consequence of these phenomena, the calculation of the gust'
load factor at high-subsonic Mach numbers utilizing the two-dimensional
incompressible indicial 1ift functions and an over-all correction for
compressibility such as the Prandtl-Glauert factor might be conservative.

Langley Aercnautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va., July 30, 1951
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APPENDIX A

PROOF FOR 1lim kj(s) = F.(w)
8—+0

The function k;(s) can be expressed as a function of F.(k) by
the following equation:

k(8) = %L/; Fo (k) ;in k5 ax (A1)

provided Fc(k) is a bounded and well-behaved function. The value of

kl(s) as 8 tends to zero positively may by evaluated by taking the
limit of both sides of equation (Al) as s—>+0:

® ¥ (k) sin k
lim Ik (s) = lim %f olk) sin ks . (A2)
8 —5+0 s—3+0 "VYo k

Before the limits in equation (A2) are evaluated, it is convenient to
make the following substitution for F.(k):

F.(k) = £(k) + F.() (43)

Substitution of this expression for F.(k) into equation (A2) leads to
the following expression for kq(s):

) 00 ‘
lim ki(s) = lim %(f £(k) sin ks 4 Fc(w)f S_i_nkﬁak> (ak)
g—>0 s—0 0 k 0
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\

Although the second integral in equation (Al4) can be evaluated readily
to give .

lim f gin ks g = 2 (a5)
s—+0v 0

n

the evaluation of the first integral in equation (A4) is not readily
evident; however it can be shown (see lemma) that

® £(x) sin ks

lim T

8—0VvYO0

dk = 0 . (A6)

since

1im f(k) =0
. e T

As a consequence of equa;tions (A5) end (A6) the value of the limit in
equation (Ak) is

lin  Iky(s) = Fe(=) ’ (A7)
s8—>+0
Lemma.:

Prove that

o]
1im f(k) sin ks

dk = 0 "(a8)
8—y+0 JO k

provided f(k) is a bounded and integrable function within the limits of
integration and

lim £(k) = O
k—> e
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If the following substitution is made for ks
ks = x {

an alternate expression for equation (A8) is had f

dx = 0 (A9)

o0
X
B o £(%)

Since f(%) is bounded and integrable within the limits of integration
and since the integral

[oe)
Jf g8in x ax
o x

is absolutely convergent, then equation (A9) is hniformly convergent
for s-z O within the limits of integration. Consequently, there is
a positive number X such that :

(A10)

bg
Py
o
o
w|E
M
&
A
Wi
m

where € 1is an arbitrary number chosen as small as desired and the
number X 1s independent of the value of s. Also a number x,, inde-

pendent of 8, may be chosen so that

L
< 56 (A11)

%o p(X\81n x 5.
" o(zeigs

Hovever,
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where
x,<E<X
It can be shown that
‘ quizxdx <= (a2>p>0)
D

therefore

X X
f f(%)—-si; X ax| < 21tf(~82>
’ o]

thus a value of S can be chosen as small as desired so that

X
fxo f(g)sii.x ax <%—'~ € (s

WA

S) (a12)

Combining the results given by equations (A10), (All), and (Al2) yields
the equation )

%)Bizxd_x <%6+%€+%‘—6 - (Sgs) (Al3a')

thus, in the limit as S—)0 positively

(=]

Lim £(X)B8 X ax = 0 (A13b)
8—+0JO0 8 ‘
or
(=]
1im f(k)sin ks dk _ o * (13c)

s—>+0 VO k
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APPENDIX B

NUMERTICAT, EVATUATION OF INCOMPRESSIBLE-FLOW INDICIAL LIFT FUNCTION

DUE TO PENETRATION OF A SHARP-EDGE GUST

The indicial 1ift functlion due to penetration of®a sharp-edge :
gust ky(s) expressed in terms of the indicial 1ift function k;(s) i

is given by equations (232) and (23b). Although a numerical evaluation ;
of the first term in equation (23a) may be performed with the aid of '
Simpsonts rule, the numerical evaluation of the integral in equation (23b) '
is difficult in that the integrand is infinite at 81 = 2. In order to

overcome this difficulty, a parabollic-arc segment can be fitted to the

function kl(s - Bl)’ between the limits 8y = %. end 8y = 2. Because

of the similarity between equations (23a) and (23b), the numerical solu-

tion of both equations can be wrltten in one equation with the aid of

matrix notation. For simplicity, the numerical solution is calculated

at integral values of 8. However, for increased accuracy the interval .
of integration is taken at quarter multiples of s. In view of these
considerations, the numerical solution for the kz(s) function may be

performed in three steps:

(1) Integration of integrand for the limits 8y =0 to s =1

With the ald of Simpson's Integrating factors the following integral
is evaluated, a quarter multiple of 8 belng assumed for the interval
of integration: X

1 8
-i—‘h/; kl(s - s]_) 2-_153._' dsy = %—%I:%(O)kl(s - 0) + %@ kl(s - '1_];.') +

-g_\/% kl(s - %) + %\/g kl(s - %) + %(l)kl(s - lﬂ (B1)

(2) Integration of integrand for the limits s =1 to s = %

In a menner similar to that shown for the evaluation of the integral
in step 1, Simpson's integrating factors can be utilized to calculate the

same integral over the limits s =1 to s =3 as follows:



NACA TN 2562 . 23
3/2 5
1 1 111
;L/; k(s - 1) \z g 1 T EE,'(l)kl(s - 1)+

HB 7)1 3) o

(3) Integration of integrand for the limits -g- to =2

As noted previously the integration for these limits is not possible
by means of the simple Simpson'!s factors since the integrand is infinite

at 8y = 2. With the change in variable s; = 2 - 0, a parabolic-arc

segment is fitted to the function I (s - 5;) between the limits &) = 3
to 8] = 2 by use of the following equation:
ki(s = 2 + 0) & A + Bo + Co® (B3)

A set of simultaneous equations relating the function ky(s - 2 + o) with
the constants A, B, and C 1in the parabolic-arc segment may be obtained

by evaluating equation (B3) at the poilnts ¢ =0, o = %p and o =‘%- as
follaws: at ¢ =0,
ki(s -2) =4 (BY4)
at o = %,
7) 1 1
k(s -L)=a+ZB+=cC | B
1( i k16 (85)
1
at o = 5
3) - 1 1
kl(s-E)_A+2]3+uc (B6)
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When equations (B4), (B5), and (B6) are solved simultaneously for
the constants A, B, and C, the resulting expressions are

A=1k(s - 2)

B-big(s-2) +8y(s-1)-2q(s-3) @D

T
i
= 8k (s - 2) - l6kl(s - .17:> + 8kl(s - %)

Q
|

If the expression for k;(s - 2 + o) given by equation B(3) is substi-

tuted into the integrand under consideration together with the values
of A, B, and C determined by equations (BT), the integral can be
evaluated in closed form in terms of the unsteady-1ift function kl(s - sl)

from sy = 3— to 8y = 2. The results of this closed-form integration are

ag follows:

—L/zkl(s-sl)/ Mk(s-2)+

(e g epnt - o




Combining equations (Bl), (B2), and (B8) allows the solution of the two equations (23a) and (23Db)

for the ko(s)
a8 followa:

(a0))
kp(B)
kp(3)

.‘
xp(¥)

1
Y

3

I

function to be written in & single matrix equation for Integral multiples of s

5 3
= Tx- 107
e 1ol
o] 0
0 o]

o ‘Oﬁa Nﬁ]

o

0 0 0 0
i o 0 o
Fal

£t T 8

[=]

<

|

<

(R &)

[=]

(89)

U

294c NI "VOWN
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In figure 10 the solutions for the kg(s) function are given

for M =0.0 and M = 0.7. DNo discernable difference was present when
the calculated values for M = 0.0 were compared with the Kissner

function.
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TAHLE I.- COEFFICIENTS FOR THE LIFT ARD MQMENT DUE TO TRANSLATORY OSCILLATION
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J40| L0198 | .olhT | L0827 | 5286 | .5hOT | .5523 |-.0518 [-.0585 [-.0672 | .007h | .0L35h| .02596
.50 [-.0375 [-.0022 | -.0538 | .6kLT | 6645 | .6820 |-.0805 {-.0902 |-.101k | .0126 | ,02324| .0ok4B2
Leol- 1146 [-,0646 | L0187 | L7698 | .Bo06 | ,BP2o |-,1160 (-,1280 (-.1ho2 | ,0201 .03732| .OTLTS
.70 [-.2103 [-.1377 [-.015% | .907L | .9526 | .975L |-.1582 |-.17k2 |-,1813 | .0308 | .0581 } .1090 | |
.80|-.3207 |-.2203 {-.04k4g5 [1.0590 |1.1187 [1.1316 |-.2069 |-.225k |-.=2178 | .ok38 | .o8185| .1578 ]
1.00 [-.5857 |-.3780 |-.087k [1.hen1 [1.5273 |1.4482 |~.3285 |-.3455 |~.2798 | .0881 | .1TaB | .2665 j 7
1.50 -.39295 2,311 ~ 400 [-- ———ee| L1896
2.00 -.6521 3.306 -.57k0 .77185\L 8
2,50 6083 b.2h e 128 | |
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